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Highly selective adenine recognition by a macrocyclic host
molecule employing multiple hydrogen bonding and p–p

stacking interactions
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Abstract—A new macrocyclic host, which contains a 2,6-bis(oxazol-2-yl)pyridine unit and a 2,7-dialkoxynaphthalene unit tethered
by the appropriate length of alkyl side chains is prepared. This host undergoes highly selective complex formation with an adenine
nucleobase, accompanied by a fluorescence response in CHCl3 by a combination of multiple hydrogen bonding and p–p stacking
interactions.
� 2006 Elsevier Ltd. All rights reserved.
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The specific recognition of adenine nucleotides and
nucleosides is very important in the regulation of various
functions in biological systems.1,2 Since the late 1980’s, as
model studies have been developed to understand such
systems, many host molecules that recognize a target
nucleobase by multiple hydrogen bonding and a combina-
tion of other modes of interactions have been reported.3

For adenine nucleobase, Hamilton,4a Rebek,4b–d and
Zimmerman4e,f developed excellent synthetic host mole-
cules4 recognizing adenine units by a combination of mul-
tiple hydrogen bonding and p–p stacking interactions.
However, the development of synthetic host molecules
that specifically recognize adenine over all other nucleo-
bases has been insufficient even in non-polar organic sol-
vents and remains as an unsolved problem.4

We recently reported on a new host molecule (host 1a)
that is capable of selectively recognizing a lipophilized
adenosine derivative in CHCl3, in a highly selective
manner (Ks = 1.2 · 104 M�1, greater than 100-fold over
all other nucleobases).5 As shown in Figure 1A, the
structure of 1a contains 5-6-5-membered heteroaromatic
rings with two carbamoyl NH sites, and provides the
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Figure 1. (A) Complexation between host 1 and adenosine derivative
by multiple hydrogen bonding. (B) Molecular structure of host 2–4.
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Scheme 1. Synthesis of macrocyclic host molecules 2–4. Reagents and conditions: (a) SOCl2, reflux; (b) NaN3, acetone–H2O, 0 �C to rt, 78% (two
steps); (c) CHCl3, reflux; (d) 9a, 9b or 9c, CHCl3, reflux, 25–37% (two steps).

618 Y. Hisamatsu et al. / Tetrahedron Letters 48 (2007) 617–621
correct orientation of complementary hydrogen bonding
sites for adenine nucleobase, which exploits both Wat-
son–Crick and Hoogsteen-type interactions.

Our further interest is to increase the stability constant
by a combination of a p–p stacking site to the rigid
structure of host 1a without decreasing the high adenine
selectivity. We wish to report herein on a new macrocy-
clic synthetic host molecule 2 in which both multiple
hydrogen bonding and p–p stacking interactions are
operative. In the macrocyclic host 2, a 2,7-dialkoxy-
naphthalene4a as the p–p stacking site and a 2,6-bis(oxa-
zol-2-yl)pyridine unit with two carbamoyl NH sites5

(host 1a) as the multiple hydrogen bonding sites is teth-
ered with an appropriate length of the alkyl side chains
(n = 6). The ability of host 2 to complex with an adeno-
sine derivative is about 2.5-fold greater than that of host
1a and the adenine selectivity over all other nucleobases
also improved. The macrocyclic host molecule 2 was
synthesized as shown in Scheme 1. Diacid 7 prepared
in four steps from 4-butoxypyridine-2,6-dicarboxylic
acid6 (see: Supplementary data) was converted to the
corresponding diazide 8 in 78% yield, which was heated
under reflux to effect a Curtius rearrangement. The
resulting diisocyanate was treated with diol 9a to give
the macrocyclic host molecule 2 in 35% yield.7 As the
guest molecules, the tert-butyldimethylsilyl protected
nucleoside derivatives (5A: adenine, 5G: guanine, 5C:
cytosine, 5U: uracil, 6T: thymine) are shown in Figure 2.

The complexation ability of host 2 was monitored by 1H
NMR spectroscopy in CDCl3 using adenosine derivative
(5A) as a guest (Fig. 3). In the presence of 5A (1 equiv), a
significant down field shift for the carbamoyl NH pro-
tons8 of host 2 (Hc, Dd +4.46 and +4.14 ppm) was ob-
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Figure 2. The structure of tert-butyldimethylsilyl protected nucleoside
derivatives.
served, consistent with complexation by hydrogen
bonding. In addition, the upfield shifts of naphthalene-
1,8- (Hd, Dd �0.36 ppm), 3,6- (He, Dd �0.24 ppm),
and 4,5- (Hf, Dd �0.27 ppm) and adenine-2- (Hg, Dd
�0.10 ppm), and 8- (Hh, Dd �0.36 ppm) proton reso-
nances were observed, indicating p–p stacking interac-
tions of two aromatic rings. The stoichiometry of the
host-guest complex between host 2 and 5A was con-
firmed to be 1:1 by a Job’s plot.9 Furthermore, NOESY
cross-peaks were observed between host 2 and 5A (Hc–
Hg, Hc–Hh, probably Hc–Hd,10 see Supplementary
data). These results strongly indicate that host–guest
complexation involved a combination of multiple
hydrogen bonding and p–p stacking interactions, as
shown in Figure 4.

Upon the addition of 5A in CHCl3, 2 showed a fluores-
cence response using 325 nm as the excitation wave-
length.11 Thus, as shown in Figure 5A, the
fluorescence intensity (kmax = 368 nm) of 2 was
quenched by the addition of 5A with no change in the
fluorescence maximum.5,12 From the change in fluores-
cence intensity, the stability constant of the 1:1 complex
between 2 and 5A was estimated to be 3.1 · 104 M�1

by the Benesi–Hildebrand method (Table 1).13 This Ks

value was of the same magnitude as Ks = 2.7 · 104 M�1

(uncertainties = 11%) determined by UV–vis titration in
CHCl3 at 20 �C.14 This result suggested that the Ks value
determined by the fluorescent response reflected the
complexation ability in the ground state. In contrast,
other nucleoside derivatives (5G, 5C, 5U, 6T) did not in-
duce an appreciable fluorescence change in the concen-
tration range of 80–320 lM (Fig. 5B). The stability
constants of 1:1 complexes, determined from the fluores-
cence decrease under higher concentrations of guests,
were 1.5 · 102 M�1 for 5C, 3 · 101 M�1 for 5G,
<3 · 101 M�1 for 5U and 6T, respectively (Table 1).13

Therefore, the adenine selectivity of host 2 was about
200-fold over all other nucleobases. To compare the
appropriate length of the alkyl side chains related to
cavities of the macrocyclic host molecules, host 3
(n = 4) and 4 (n = 8) were also obtained in 37% and
25% yield from 8, respectively.15 The 1:1 stability con-
stants for host 3 (kmax = 370 nm) and host 4 (kmax =
371 nm) to 5A were determined to be 2.0 · 104, and
8.5 · 103 M�1, respectively by fluorescence titrations
(Table 1).13 These results show that host 2 has the
appropriate length of alkyl side chains (n = 6) required
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Figure 3. 1H NMR spectra of host 2 and/or guest 5A in CDCl3, measured at 25 �C with TMS as the external standard: (A) [2] = 10.0 mM; (B)
[2] = 10.0 mM, [5A] = 10.0 mM; (C) [5A] = 10.0 mM.
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Figure 4. The proposed complexation mode of host 2 and 5A by
multiple hydrogen bonding and p–p stacking interactions and the key
NOE contacts.
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Figure 5. (A) Guest-induced quenching of the fluorescence of host 2

with increasing concentration of 5A. (B) Plot of the ratios of
fluorescence intensity at 368 nm of host 2 in absence (I0) and in the
presence (I) of nucleoside guests. The condition for (A): [2] = 20 lM,
[5A] = 10–200 lM. (B): [2] = 20 lM, [5A] = 10–320 lM, [5G, 5C, 5U,
6T] = 80–320 lM; �, 5A; n, 5G; h, 5C; +, 5U; s, 6T. For both (A)
and (B): kex = 325 nm; solvent, CHCl3; temperature, 20 �C.
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to recognize 5A effectively. On the other hand, the sta-
bility constant of host 2 to 9-hexyladenine without sugar
residue was determined to be 8.6 · 104 M�1 (CHCl3,
20 �C),14,16 about 25-fold higher than Hamilton’s mac-
rocyclic host17 with a similar complexation mode for
9-butyladenine (3.2 · 103 M�1, CDCl3, 25 �C). Further,
the stability constant of host 2 to 5A was almost three-
fold lower than that to 9-hexyladenine, which could be
due to steric hindrance between the naphthalene unit
of host 2 and the sugar residue of 5A.4d,18

In conclusion, the new macrocyclic host 2, which con-
tains the 2,6-bis(oxazol-2-yl)pyridine unit and the 2,7-
dialkoxynaphthalene unit tethered by the appropriate
length of alkyl side chains is prepared. Host 2 undergoes
highly selective complex formation with adenosine
derivative 5A, accompanied by the fluorescence response
in CHCl3 by the combination of multiple hydrogen
bonding and p–p stacking interactions. Compared with
host 1a, host 2 shows improvements in both the stability
constant for 5A and adenine selectivity over all other
nucleobases. Further studies for the developments of
optimized macrocyclic host molecules and applications



Table 1. Stability constants of the macrocyclic host molecules 2–4 for
1:1 complexes with a series of guests in CHCl3 at 20 �C

Hosts Guests Ks (M�1)

2 5A 3.1 · 104 a

2 5C 1.5 · 102 b

2 5G 3 · 101

2 5U <3 · 101

2 6T <3 · 101

3 5A 2.0 · 104 a

4 5A 8.5 · 103 a

2 9-Hexyladenine 8.6 · 104 c

The stability constants are typically the average of two experiments:
a The value agreed within 15%.
b The value agreed within 20%.
c The value agreed within 6%.
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for chemical sensing by potentiometric response5,19 and
fluorescence detection12a of adenine nucleotides on a
membrane/water interface are currently in progress in
our laboratory.
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